Overexpression of superoxide dismutase or glutathione peroxidase protects against the paraquat + maneb-induced Parkinson disease phenotype.
نویسندگان
چکیده
Oxidative stress has been implicated in the pathogenesis of Parkinson disease based on its role in the cascade of biochemical changes that lead to dopaminergic neuronal death. This study analyzed the role of oxidative stress as a mechanism of the dopaminergic neurotoxicity produced by the combined paraquat and maneb model of the Parkinson disease phenotype. Transgenic mice overexpressing either Cu,Zn superoxide dismutase or intracellular glutathione peroxidase and non-transgenic mice were exposed to saline, paraquat, or the combination of paraquat + maneb twice a week for 9 weeks. Non-transgenic mice chronically exposed to paraquat + maneb exhibited significant reductions in locomotor activity, levels of striatal dopamine and metabolites, and dopaminergic neurons in the substantia nigra pars compacta. In contrast, no corresponding effects were observed in either Cu,Zn superoxide dismutase or glutathione peroxidase transgenic mice. Similarly, the increase in levels of lipid hydroperoxides in the midbrain and striatum of paraquat + maneb-treated non-transgenic mice was not detected in either Cu,Zn superoxide dismutase or glutathione peroxidase transgenic mice. To begin to determine critical pathways of paraquat + maneb neurotoxicity, the functions of cell death-inducing and protective mechanisms were analyzed. Even a single injection of paraquat + maneb in the non-transgenic treated group modulated several key pro- and anti-apoptotic proteins, including Bax, Bad, Bcl-xL, and upstream stress-induced cascade. Collectively, these findings support the assertion that protective mechanisms against paraquat + maneb-induced neurodegeneration could involve modulation of the level of reactive oxygen species and alterations of the functions of specific signaling cascades.
منابع مشابه
Alteration of Endogenous Glutathione Peroxidase, Manganese Superoxide Dismutase, and Glutathione Transferase Activity in Cells Transfected with a Copper-Zinc Superoxide Dismutase Expression Vector
Transfection of a human pSV2 (copper-zinc) superoxide dismutase expression vector into murine fibroblasts resulted in stable clones producing increased amounts of copper-zinc superoxide dismutase. A marked increase in endogenous glutathione peroxidase activity (up to 285%) and a smaller increase in glutathione transferase activity (up to 16%) also occurred. Manganese superoxide dismutase activi...
متن کاملEffect of Selenium Deficiency
to assess toxicity in control and selenium-deficient rats given paraquat and diquat. Lipid peroxidation was measured by determining ethane production rates of intact animals; toxicity was assessed by survival and by histological and serum enzyme evidence of liver and kidney necrosis. Paraquat and diquat were both much more toxic to selenium-deficient rats than to control rats. Diquat (19.5 umol...
متن کاملTualang Honey Protects the Rat Midbrain and Lung against Repeated Paraquat Exposure
Paraquat (PQ) is a dopaminergic neurotoxin and a well-known pneumotoxicant that exerts its toxic effect via oxidative stress-mediated cellular injuries. This study investigated the protective effects of Tualang honey against PQ-induced toxicity in the midbrain and lungs of rats. The rats were orally treated with distilled water (2 mL/kg/day), Tualang honey (1.0 g/kg/day), or ubiquinol (0.2 g/kg...
متن کاملBerberine protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cells
Objective(s): Neurodegenerative diseases have been associated with glutamatergic dysfunction. Berberine, an isoquinoline alkaloid broadly present in different medicinal herbs, has been reported to have neuroprotective effect. In the present study, the effects of berberine against glutamate-induced oxidative damage and apoptosis were investigated. Materials and Methods: The cultured PC12 and N2a...
متن کاملTransgenic mice overexpressing glutathione peroxidase 4 are protected against oxidative stress-induced apoptosis.
Glutathione peroxidase 4 (Gpx4) is uniquely involved in the detoxification of oxidative damage to membrane lipids. Our previous studies showed that Gpx4 is essential for mouse survival and that Gpx4 deficiency makes cells vulnerable to oxidative injury. In the present study, we generated two lines of transgenic mice overexpressing Gpx4 (Tg(GPX4) mice) using a genomic clone containing the human ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 280 23 شماره
صفحات -
تاریخ انتشار 2005